
www.manaraa.com

On Distributed Systems Debugging

Jǐŕı Patera, Jǐŕı Šafař́ık
Department of Computer Science and Engineering

University of West Bohemia, Univerzitńı 8, 306 14 Plzeň, Czech Republic
e-mail: {jipatera, safarikj}@kiv.zcu.cz

Abstract

Software engineers have to face many problems when creating, testing and debugging their
applications. One of the most challenging problems today is closely associated with the modification
of distributed systems. Even a small modification of such a system can considerably change its
behavior. This paper explores methods which play an important role in the research on debugging
parallel and distributed systems. We will study the detection of global state predicates and the use
of temporal logic operators. Finally, on-line and off-line approaches to the problem of debugging a
distributed system will be discussed. These include real-time monitoring and deterministic replay.

1. Introduction

The importance of using distributed systems
is becoming more and more important not
only with the growth of the Internet, but also
by their usage in real-time embedded systems.
However, today’s complex distributed sys-
tems are difficult to design without bugs (mis-
matches between expected and actual compu-
tations). Although, programmer’s skills and
intuition play a very important role during
the design process, the existence of tools (de-
buggers), that provide observation and con-
trol of a computation, is essential.

Testing and debugging are two terms
which are often mixed up. The purpose of
testing is to show whether the program has
bugs (faults), while the purpose of debugging
is to locate and remove sources of the bugs,
which might have lead to a failure followed by
a potential error.

Research on distributed systems debug-
ging has focused on two main areas: detect-
ing bugs in a distributed computation, and
replaying a traced distributed computation.
The techniques of detecting bugs depend on
the types of bugs. An important work in this
area is a global snapshot algorithm [2] which

The research was supported by a grant of the Grant
Agency of the Czech Republic – Research of meth-
ods and tools for verification of embedded com-
puter systems, no. 102/03/0672.

is used to detect stable properties (e.g. dead-
lock or termination). Since then, many algo-
rithms for different classes of bugs have been
designed.

For example, race conditions (when two
or more processes are competing for an access
to one resource), or evaluating predicates on
single global states [3]. Research in replay-
ing traced computations focused mainly on
reducing the size of the trace data [4]; where
only messages, which are not causally related,
are necessary for an exact reproduction of the
execution.

One of the aims of this paper is to investi-
gate the issues that make debugging of paral-
lel and distributed systems so hard. Further-
more, this paper presents a survey of a state
of the art in the field of distributed systems
debugging. Finally, we point out areas for
future research using the major part of the
paper as a background.

2. Model of Computation

A distributed system consists of n sequential
processes p1, p2, . . . , pn which can send mes-
sages to each other over reliable or unreliable
channels. The system is asynchronous and
has no shared memory. Channels can have
either FIFO or non-FIFO character.

Let us have n processes p1, p2, . . . , pn. As
we know, each process consists of a series of



www.manaraa.com

events. Thus, we can describe (like in [1]) an
execution of each process by its history. First
k events in a process’s history are called a
prefix of the process’s history. We can also
form a global history of a distributed system
as the union of individual process histories.

A cut of a system’s execution is a subset of
its global history which is formed as a union
of prefixes of individual process histories. A
set of events is called a frontier of the cut, if
only the last events from all local prefixes are
included there.

The cut is consistent if for each event it
contains, it also contains all the events that
happened-before that event. Otherwise, the
cut is said to be inconsistent. A consistent
global state is then such a global state that
corresponds to a consistent cut.

An execution of a distributed system is a
series of transitions between global states of
the system. In fact, we can have as many
global states as the number of events in the
system is, some of these states are consistent,
and some are not. A run is a total ordering in
a global history of the system which is consis-
tent with each local history’s ordering. Apart
from that, there is a linearization (also known
as a consistent run) which is consistent with
the global history’s ordering.

To sum up, not all runs pass through con-
sistent global states, but all linearizations do
pass through consistent states only. We say
that a state S ′ is reachable from a state S
if there is a linearization that passes first
through S and then S ′.

3. Global State Predicates

Detecting a condition in a distributed system
equals to evaluating a global state predicate.
The global state predicate is a function that
maps from a set of global states in the system
to {true, false}. A local predicate is such a
predicate whose truth value depends only on
the state of a single process. The four well-
known classes of global predicates are stable,
observer-independent, linear, and semi-linear.

Stable predicates [2] are usually associated
with distributed problems such as deadlock

or termination. Once the system enters a
state where the predicate is evaluated to true,
it remains true also in all future states that
the system can enter. On the other hand,
when we monitor or debug an application, we
are often interested in non-stable predicates.
These predicates can evaluate to true only in
certain states of the computation and they
need not be evaluated to true in any future
state.

Observer-independent predicates [10] are
such predicates where possibly Φ and defi-
nitely Φ are equivalent. The name comes
from a set of observers where each witnesses
a different sequential execution of the sys-
tem. Each observer can determine if the pred-
icate became true in any of the cuts witnessed
by them. If the predicate is observer inde-
pendent, then all observers must agree on
whether it was ever evaluated to true. Any
stable predicate is also observer-independent.

The definition of a linear predicate [11] is
based on a “forbidden” state S (the predicate
Φ in the cut containing state S must remain
false until a successor to S is reached). A
predicate is linear if for any cut, in which the
predicate is false, at least one of the states
is forbidden. In addition, there is a unique
first cut where every linear predicate is true.
[11] also gives explanations why linear pred-
icates are not necessarily stable or observer-
independent. A special class of linear pred-
icates are regular predicates. A predicate is
regular if the set of global states that satisfy
the predicate forms a sub-lattice of the global
state lattice.

The class of semi-linear predicates, first
proposed in [11], contains all the three previ-
ous classes. Its definition is based on a “semi-
forbidden” state S, which is irrelevant to the
truth-value of the predicate. While we are
looking for a cut where the predicate is true,
we can disregard S in favor of its successor.

From another point of view, there are two
classes of predicates, conjunctive and disjunc-
tive predicates. In the former class, local
predicate formulas are connected using

∧
op-

erator only to form a global predicate. In



www.manaraa.com

the latter class, it is
∨

operator instead. As
[11] proves, a conjunction or disjunction of
stable predicates is also a stable predicate.
A disjunction of observer-independent predi-
cates is again an observer-independent predi-
cate, but this does not hold for a conjunction.
Regarding linear predicates, the opposite is
true. A conjunction of linear predicates is
a linear predicate, but a disjunction is not.
Semi-linear predicates are not closed neither
under a conjunction, nor under a disjunction.

3.1 Predicate Detection

Next, we examine the problem of finding out
whether a transitory state occurred in an ac-
tual execution (a non-stable predicate was
evaluated to true). This is what we require
when debugging a distributed system. The
aim is to determine the cases where a global
state predicate was definitely true at some
point of the execution, and cases where it was
possibly true.

Detection of a stable predicate is trivial.
It is sufficient to detect it in any one consis-
tent state of the system and we know for sure
that it will remain true until the final state.
Apart from that, the detection of non-stable
predicates is more complicated.

Next, we describe operators possibly, def-
initely [1], controllable, and invariant. For a
predicate Φ in terms of linearizations L of the
global history of the system’s execution H.

possibly Φ means that there is a consistent
global state S through which L of H
passes such that Φ is true in S.

definitely Φ means that for every L of H,
there is a consistent global state S
through which L passes such that Φ is
true in S.

controllable Φ means that Φ is true in ev-
ery consistent state along some L of H.

invariant Φ means that Φ is true in every
consistent state along every L of H.

Let us note that we may conclude defi-
nitely(¬Φ) from ¬possibly(Φ). However, we

may not conclude ¬possibly(Φ) from defi-
nitely(¬Φ) (predicate ¬Φ holds at some state
on every linearization, nevertheless, Φ may
hold at the other states).

Generally, there are three approaches to
the detection of global predicates. In the first
one, global snapshot algorithm [2] is used re-
peatedly until a consistent state where pred-
icate Φ holds is found. This approach can be
used for detection of stable predicates only.

Secondly, the construction of a global
state lattice [12] is used. The lattice captures
the reachability relation between consistent
global states of a distributed system. Nodes
denote consistent global states, and edges de-
note possible transitions between the nodes.
This lattice is then explored and evaluated
in order to detect stable and unstable predi-
cates. This detection can be very expensive.
In the system with n processes where each
process has m local states, this approach re-
quires exploring of O(mn) global states in the
worst case.

In the third approach, the whole lattice
is not constructed. Instead only a subset
of global states, based on the structure of
the predicate, is identified. For example,
the predicate may depend only on the states
which are related to a particular variable and
so the detection is more efficient than in the
second approach.

When the global lattice is created, its ex-
ploration checks whether a predicate is satis-
fied for all possible computations (lineariza-
tions) of a program. This approach is being
referred as a model checking. Next approach
to predicate detection checks only the global
states that occurred in one particular com-
putation. The latter approach is close to a
distributed systems debugging where only a
single execution trace is captured. Even if the
model checking were used on a single compu-
tation, the complexity of detecting a predi-
cate would be still proportional to the size of
the lattice which is exponential in the number
of processes.

In the predicate detection approach, we
are only detecting whether a given predicate



www.manaraa.com

ever became true. Apart from that, the pred-
icate control problem states that given a dis-
tributed computation and a global predicate,
it is possible to add synchronization arrows
(messages) to the computation such that the
predicate always stays true.

4. Observing Consistent Global
States

In general, a monitor process lies outside the
system [1]. The monitor must assemble con-
sistent global states at which it evaluates
predicates. It does so from timestamped state
messages which it receives from the cooper-
ating group of processes. The state message
carries a new value of the process’s local vari-
ables and also an actual vector time-stamp of
the sending process.

The monitor keeps incoming state mes-
sages in per-process queues (one separate
queue for each process). The state messages
in the queues are ordered by their sending or-
der, which can be established immediately by
examining the ith component of the pi’s mes-
sage vector time-stamp. Obviously, the mon-
itor cannot order the states of different pro-
cesses from their arrival order due to variable
message latencies. Instead it has to examine
the vector timestamps of the state messages.

Let S = (s1, s2, . . . , sN) be a global state
assembled by the monitor process from re-
ceived state messages. Let V (si) denote the
vector time-stamp of the state si received
from pi. Then S is a consistent global state
iff the following equation holds [1].

V (si)[i] ≥ V (sj)[i] ∀i, j ∈ {1, 2, . . . , N}

It says that the number of pi’s events known
at pj is not greater than the number of events
that had occurred at pi until it sent si. In
other words, if a state of one process de-
pends on the state of another process, then
the global state includes also the state upon
which it depends. This is a method which
the monitor process can use to distinguish
whether the state messages form a consistent
or inconsistent state of the system.

5. Temporal Logics and CTL*

Temporal logic [13] is a kind of modal logic.
It provides temporal logic operators for de-
scription of how the truthfulness of logic for-
mulas (predicates) changes with time. There
are many classes of temporal logics: propo-
sitional, first-order, global, compositional.
They can be further divided on (according to
the used model of time): linear, branching,
continuous, and discrete.

The most often used temporal logic is
CTL (Computation Tree Logic [14]) and its
extension CTL* [15], which is a union of CTL
and PLTP (Propositional Linear Temporal
Logic).

While several temporal logics may be used
for description of the system, the one we will
use is CTL*, which has two types of formulas:
state, and path. State formulas represent the
properties of a specific state, whereas path
formulas specify the properties of a specific
path. CTL* formulas are composed of path
quantifiers, temporal operators, and atomic
propositions.

Path quantifiers are A (all paths) and E
(there exists a path). The following five tem-
poral operators are used in CTL*: X (next
time), F (future), G (global), U (until), and
R (release). A finite set of atomic proposi-
tions is consisted of CTL* formulas that rep-
resents some properties of a global state.

We use the following abbreviations in
writing CTL* formulas:

• AF(p) ≡ A[true U p] intuitively means
the same as definitely(p),

• EF(p) ≡ E[true U p] intuitively means
the same as possibly(p),

• EG(p) ≡ ¬AF(¬p) intuitively means
the same as controllable(p),

• AG(p) ≡ ¬EF(¬p) intuitively means
the same as invariant(p).

5.1 Predicate Detection Algorithms

To our best knowledge, predicate detection
algorithms have been designed for the above



www.manaraa.com

operators of CTL*, when p belongs to a spe-
cific predicate class. A review [18] of refer-
ences to existing algorithms is summarized in
Table 1.

Predicate Algorithm

p EF(p) AF(p) EG(p) AG(p)
conjunctive [16] [17] [16] [17]
disjunctive [17] [16] [17] [16]

stable [2] [10] trivial trivial
linear [11] open [18] [18]

obs.-indep. [11, 10] [11, 10] [18] [18]
regular [19, 20] open [19, 20] [19, 20]

Table 1: Predicate Detection Algorithms

6. On-line and Off-line Debug-
ging

Generally, on-line and off-line approaches to
debugging a distributed system are divided
on observation and control [21].

In observation there are two processes re-
sponsible for observing a global state of the
system. A non-checker process has direct ac-
cess to local predicates and channels of a par-
ticular process, whereas the checker process
(the monitor) is responsible for detection of
predicates in a global state. In fact, this is
called a real-time monitoring. When observ-
ing off-line, the entire computation is given
to us, whereas in the on-line approach we are
given only the past and we have to make ob-
servations as the computation is unfolding.

Control is the next natural step after ob-
servation. A supervisory process observes the
underlying user process. Moreover, it controls
it by delaying (or disabling) some events or
changing the order of incoming or outgoing
messages in the process. A supervisory pro-
cess is performing on-line control if it does
not know about the future of the computa-
tion. For example, it is impossible for an
on-line controller to meet disjunctive speci-
fications without avoiding deadlocks. In the
off-line control model, the supervisor knows
about the future. If some monitored compu-
tation had unexpected final results and all the

messages sent during the computation were
timestamped and logged, then the computa-
tion can be replayed under the supervisory
control. During the computation replaying,
the messages can be delayed or their order
can be changed so that we got the expected
results. This is called as deterministic reply.
Note that delaying and changing the order of
messages can also be applied onto an on-line
computation. Due to the lack of knowledge
about the future, we are unable to avoid dead-
lock. [22] shows that off-line predicate control
for general boolean predicates is NP-hard.

Finally, [21] gives descriptions of problems
in observation, which are open for research.
For example, a problem of detecting exactly-k
predicates, or a detection of 2-SAT predicates.

7. Conclusions

We have investigated main issues that make
debugging of parallel and distributed systems
so hard and presented a brief survey of a state
of the art in the field of distributed systems
debugging.

Global state predicates and their detec-
tion have been studied. They were expressed
using operators of CTL* temporal logic. Ref-
erences to existing methods for detection of
predicates of particular classes have also been
presented.

In addition, we discussed on-line and off-
line approaches to the debugging of dis-
tributed systems (particularly, observation
and control of distributed computations).

Finally, we pointed out areas of future re-
search as finding out efficient algorithms for
regular and linear predicate detection under
AF operator of CTL*, detection of exactly-k
predicate, detection of 2-SAT predicates, and
detection of conjunction of 2-local predicates.

References

[1] Coulouris, G., Dollimore, J., Kindberg, T.:
Distributed Systems: Concepts and De-
sign, 3rd edition, 672 pages, Addison Wesley,
ISBN 0-201-61918-0, 2000.

[2] Chandy, K. M., Lamport, L.: Distributed



www.manaraa.com

Snapshots: Determining Global States of
Distributed Systems, ACM Transactions on
Computer Systems 3:1, 195, pp.63–75, 1985.

[3] Babaoglu, O., Marzullo, K.: Consistent
Global States of Distributed Systems: Fun-
damental Concepts and Mechanisms, Dis-
tributed Systems, Addison-Wesley, editor S.
Mullender, pp.55–96, 1993.

[4] Netzer, R. H. B., Miller, B. P.: Op-
timal Tracing and Replay for Debugging
Message-Passing Parallel Programs, CS-94-
32, http://citeseer.nj.nec.com/
netzer92optimal.html, 1994.

[5] Helary, J. M.: Observing Global States of
Asynchronous Distributed Applications, In
Proceedings of the 3rd International Work-
shop on Distributed Algorithms, number
392 in LNCS, pp.124–135, Springer, 1989.

[6] Mattern, F.: Efficient Algorithms for Dis-
tributed Snapshots and Global Virtual
Time Approximation, Journal of Parallel
and Distributed Computing, volume 18:4,
pp.423–424, 1993.

[7] Chow, R., Johnson T.: Distributed Operat-
ing Systems & Algorithms, 569 pages, Ad-
dison Wesley, ISBN 0-201-49838-3, 1997.

[8] Bhargava, B., Lian, S. R.: Independent
Checkpointing and Concurrent Rollback for
Recovery – An Optimistic Approach, In
Proceedings of the International Conference
on Data Engineering, pp.182–189, 1988.

[9] Wang, Y. M., Fuchs, W. K.: Lazy Check-
pointing Coordination for Bounding Roll-
back Propagation, Symposium on Reliable
Distributed Systems, pp.78–85, 1993.

[10] Charron-Bost, B., Delporte-Gallet, C., Fau-
connier, H.: Local and Temporal Predicates
in Distributed Systems, ACM Transactions
on Programming Languages and Systems,
17(1):157–179, 1995.

[11] Chase, C., Garg, V. K.: Detection of Global
Predicates: Techniques and Their Limita-
tions, Distributed Computing, 11(4):191–
201, 1998.

[12] Cooper, R., Marzullo, K.: Consistent De-
tection of Global Predicates, Proceedings of
the ACM/ONR Workshop on Parallel and

Distributed Debugging, published in ACM
SIGPLAN Notices, 26(12):167–174, 1991.

[13] Manna, Z., Pnueli, A.: The Temporal Logic
of Reactive and Concurrent Systems: Spec-
ification, Springer Verlag, 442 pages, ISBN-
0387976647, 1991.

[14] Clarke, E. M., Emerson, E. A.: Design
and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic, In
Proc. of the Workshop on Logics of Pro-
grams, volume 131 of Lecture Notes in Com-
puter Science, Yorktown Heights, 1981.

[15] Clarke, E. M., Emerson, E. A., Sistla, A.
P.: Automatic Verification of Finite-State
Concurrent Systems Using Temporal-Logic
Specifications, ACM Transactions on Pro-
gramming and Systems, 8(2):244–263, 1986.

[16] Garg, V. K., Waldecker, B.: Detection of
Weak Unstable Predicates in Distributed
Programs, IEEE Trans. on Parallel and Dis-
tributed Systems, 5(3):299-307, 1994.

[17] Garg, V. K., Waldecker, B.: Detection of
Strong Unstable Predicates in Distributed
Programs, IEEE Trans. on Parallel and Dis-
tributed Systems, 7(12):1323-1333, 1996.

[18] Garg, V. K., Sen, A.: Detecting Tem-
poral Logic Predicates on the Happened-
Before Model, Technical Report TR-PDS-
2001-003, PDSL, ECE Dept. Univ. of Texas
at Austin, 2001.

[19] Garg, V. J., Mittal, N.: Computation Slic-
ing: Techniques and Theory, In Proc. of the
15th Intl. Symposium on Distributed Com-
puting (DISC), pp.78–92, 2001.

[20] Garg, V. J., Mittal, N.: On Slicing a Dis-
tributed Computation, In Proc. of the 15th

Intl. Conference on Distributed Computing
Systems (ICDCS), pp.322–329, 2001.

[21] Garg, V. K.: Observation and Control
for Debugging Distributed Computations,
Proc. 3rd Intl. Workshop on Automated De-
bugging (AADEBUG’97), Linkoping, Swe-
den, pp.1–12, 1997.

[22] Tarafdar, A., Garg, V. K.: Predicate Con-
trol for Active Debugging of Distributed
Programs, Proc. of the IEEE 9th Sympo-
sium on Parallel and Distributed Processing
(SPDP), pp.763–769, Orlando, USA, 1998.


